다빈치AI대학원은 교학, 산학, 국제협력, 확산 분과별 체계를 구성하여 AI 교육 및 연구의 확산을 지원합니다.
basic 3
1986 2022-07-26
BASIC 22
1564 2022-07-26
basic 1
719 2022-07-26
AI대학원 오픈랩(오전)
644 2023-10-31
basic 4
617 2022-07-26
AI대학원 오픈랩(오후)
601 2023-10-31
Multi-modality image computing for AI-assisted cardiology
511 2022-09-12
Optimizers for deep learning: From SGD to AdamP
481 2022-09-12
AI시대, 현대인이 나아가야 할 길
380 2022-09-13
[K-MOOC] 세상을 움직이는 AI(Day-1)
359 2022-10-18
Effects of overparameterization on sharpness-aware minimization
236 2023-10-23
Fine-tuning instability and non-termination in large-scale language models
207 2023-04-07
Empirical Methods and Recent Topics for Video Moment Retrieval
191 2023-05-19
Can We Find Strong Lottery Tickets in Generative Models?
182 2023-08-18
Maillard Sampling: Boltzmann Exploration Done Optimally
169 2023-06-26
Effective Representation Learning for Distribution Shift
140 2023-09-26
Utilizing Visibility Algorithm for Fault
98 2023-04-04
기계학습 기술 트렌드
83 2023-10-26
컴퓨터비전
75 2023-10-26
Multi-modality image computing for AI-assisted cardiology
511 2022-09-12
Probabilistic Neuromorphic Computing and Learning
329 2022-09-12
Task-Adaptive Meta-Learning for Few-Shot Learning
314 2022-09-12
VisionScaling: Dynamic Learning and Resource Scaling in Mobile AI
292 2022-09-12
Refining Action Segmentation with Hierarchical Video Representations
253 2022-09-12
1. Introduction
94 2024-09-13
4. Few-shot Learning
82 2024-09-13
8. Active Learning
82 2024-09-13
2. Transfer Learning
81 2024-09-13
3. Multi-task Learning
80 2024-09-13
9. Meta Learning
79 2024-09-13
5. Domain Adaptation & Generalization (1)
77 2024-09-13
7. Continual & Lifelong Learning
77 2024-09-13
6. Domain Adaptation & Generalization (2)
76 2024-09-13
12. Unsupervised Representation Learning 2 - Self-supervised Learning
61 2024-09-13
1.Limits and Derivatives (1)
112 2024-09-05
3. Differentiation Rules (1)
91 2024-09-06
2. Limits and Derivatives (2)
90 2024-09-06
6. Applications of Differentiation (2)
87 2024-09-06
8. Integrals (2)
87 2024-09-06
5. Applications of Differentiation (1)
86 2024-09-06
9. Applications on Integration
85 2024-09-06
10.Techniques of Integration (1)
84 2024-09-06
4. Differentiation Rules (2)
83 2024-09-06
7. Integrals (1)
82 2024-09-06
1. introduction
180 2023-12-11
4. Convolution video 2
177 2023-12-11
9. audioProcessing 1-(1)
176 2023-12-11
12. image processing 1
166 2023-12-11
7. filtering
157 2023-12-11
6. FFT
153 2023-12-11
2. discrete time signal and system
151 2023-12-11
5. fourier series and transformation
145 2023-12-11
8. filter
145 2023-12-11
3. Convolution video 1
144 2023-12-11
2. Linear Regression
175 2023-12-08
14. Generative Models
170 2023-12-11
4. Logistic Regression
158 2023-12-08
5. Feed-forward Neural Network
158 2023-12-08
12. Machine Translation
158 2023-12-11
9. Convolutional Neural Networks(2)
157 2023-12-11
3. Linear Classification
155 2023-12-08
6. Regularization for Deep Learning
150 2023-12-08
1. Framework for ML
143 2023-12-08
7. Optimization for Deep Learning
142 2023-12-08
2024-12-16
2024-11-26
2024-11-01
2024-11-01
2024-09-30